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Abstract—An infinite plate of neo-Hookean elastic material is bonded on one face to a rigid substrate. It is
subjected to a uniform shear and dead-loaded with a uniform thrust. A periodic bifurcation solution is
obtained when the thrust per unit area exceeds a critical value. The relation between the wave-length,
thrust, amount of shear and plate thickness is obtained.

1. INTRODUCTION

In this paper we consider the critical loading conditions for which a bifurcation solution is
obtained when an infinite plate of incompressible isotropic neo-Hookean elastic material,
bonded on one face to a rigid substrate, is subjected to a uniform shear of amount K and
simultaneously dead-loaded on the other face by a uniform normal thrust.

We suppose that an infinitesimal spatially periodic deformation is superposed. A secular
equation is obtained for the determination of the wave-length of the superposed deformation.
This secular eauation yields a real value for the wave-length when some critical value of the
normal thrust per unit area, which depends slightly on K, and is approximately equal to twice
the shear modulus, is reached. For this critical value of the thrust, the wave-length of the
infinitesimal superposed deformation is zero and, as the thrust is increased beyond this value, K
remaining fixed, the wave-length increases.

Except at values of the thrust per unit area near the critical value, the wave-length is
proportional to the square root of the thrust per unit area and is nearly independent of K. At
values of the thrust near the critical value, the wavelength becomes extremely sensitive to the
thrust. At all values of the thrust and of K, the wave-length is proportional to the thickness of
the plate, as may be expected from dimensional considerations.

For specified values of the thickness and of the thrust per unit area, beyond the critical
value of the latter, a periodic static bifurcation solution is obtained with uniquely determined
wave-length. However, if the plate were finite in the direction of the periodicity, the end
conditions would enable us to determine the spectrum of values of the wave-length, and hence
of the thrust per unit area, at which the bifurcation solution can occur.

2. BASIC EQUATIONS

We consider a flat plate of incompressible isotropic neoHookean elastic material of
thickness h to be located with its major surfaces normal to the 2-axis of a rectangular Cartesian
coordinate system x. The dimensions of the plate in the 1 and 3 directions are supposed large
compared with A.

Let £ be the vector position of a generic particle of the plate in its undeformed state and let
£ (a=1,2,3) be the components of £ in the system x. We suppose that initially the plate is
located with its major surfaces in the planes & =0 and £ = h and that the face ¢, = 0 is bonded
to a rigid plate which remains fixed in space.

Suppose the elastic plate undergoes a deformation in which a particle initially at ¢ moves to
vector position x with components x; (i = 1,2, 3) in the system x. Then, the strain-energy W per
unit volume is given, in appropriately chosen units, by

W =3 (ke =), .
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where ,a is used to denote differentiation with respect to &,. The Piola-Kirchhoff stress 11,
referred to the system x, is given by

- 1 =
I = X0 — 3 Péii€ap,XipXiy (2.2)

where ¢; denotes the alternating symbol and P is an arbitrary hydrostatic pressure. Since the
material considered is incompressible

det |x;,| = 1. (2.3)

We now suppose that the deformation £-x is the resultant of a finite deformation £ - X
and an infinitesimal deformation X - x, where

x=X+¢eu 2.4)
and ¢ is a small parameter. We assume that the force system associated with the deformation
£—x differs by terms of order e from that associated with the deformation ¢—X. We
accordingly write

ﬁal' = ﬁai + €M ais ﬁ = p + €p~ (2~5)
Then, from (2.2) we obtain, with (2.4) and (2.5),

ML = Xix ~5 Peweapr XisXe
Mai = Uiq = % €iiapy{ P (Xiyllip + Xigltey) + DX pXi ). (2.6)
Similarly from (2.3) we have
det | Xio| =1, €u€apyXiaXiplh, =0. 2.7
The Piola-Kirchhoff equations of equilibrium yield

M, =0 and 7, =0. 2.8)

3. THE GOVERNING EQUATIONS

If the deformation £ - X is a simple shear of amount K, for which the direction of shear is
the 1-direction and the plane of shear is the 12-plane, then

Xi=6+ K&, Xo=6, Xy=6§,. (3.1

We shall assume that the superposed infinitesimal deformation X—x is a plane deformation in
the 12-plane. We can then write

uy = (€1, &), U= uy(é), &), uy=0. (3.2)
With (3.1), eqn (2.7), is automatically satisfied and with (3.1) and (3.2) eqn (2.7), yields

u,_,+u22—Ku2_1 =0. (33)
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Also, with (3.1), (3.2) and (3.3) eqns (2.6) yield

My =Mp=MNy=1-P, ,=KP, Il =K,
My =Mi=Iy=0y,=0, 34

and
=iy = Plya—p, mp=Uy2— Puy,~p, my=-p,

iy = Uy + Puy s+ pK, ma = w3+ Puyy, w3y = m3=mp3=my=0. (3.5

With (3.4), eqn (2.8), implies that P is constant. With (3.5), the incremental equation of
equilibrium (2.8), yields

U + U= Py, Ua gy + U2 + Kp’l =Dy Py T 0. (36)
The last of these equations implies that p = p(,, &).
From (3.3) it follows that there exists a function ¢(£,, &) in terms of which we may express
u,, Uy by the relations

=y~ Ky, a=-4¢,. 3.7

By substituting (3.7) in (3.6),, and eliminating p, we obtain

V(1 + Ky + i = 2Ki12) = 0, (3.8)
where
aZ 62
v2 =— + -3 .
36" 06 (3.9)

We shall obtain solutions of (3.8) which are sinusoidal in the 1-direction. Accordingly, with
the usual complex notation, we write

¥=¢&)e™, (3.10)
where k is a constant. Introducing (3.10) into (3.8), we obtain
o™ ~22kKo" - k*Q+ K»)¢" + uk’K¢' + k*(1+ KH¢ = 0, (3.11)

where the prime denotes differentiation with respect to £&. Equation (3.11) has the general
solution

4
= a e“Afl’
¢ ;;‘ A 3.12)
where the a’s are (complex) constants and the a's are given by

ay=k, ay=—k, as=k(1+1K), a,=k(-1+K). (3.13)
With (3.10) and (3.12), we obtain from (3.7)

4
u, = e'*é ;I(a,. —tkK)a, e+,

4
uy = —tk e*é ;’: a, eoaty, (.19
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With (3.14), egns (3.6) yield

= eHh gl (- k*Naq — kK)a, €48,
P = e A}; (a4 = k)[~tk(1 + K*) + Kaa)a, e*42, (3.1%)
These eguations yield
P=-% L ik ; (aa’ ~ k*)a, — kK)a, €*4% + constant. (3.16)
With (3.14) and (3.16), we obtain from (3.5)
o "‘“AE {zka,‘ (P +——'})+Kaz,. }aA e A&
= g% ;; {~thas(2+P- —4,) +K(ai- K-k,
mp=e*h ;} { ~tkKay ( -1+ i’ﬁ-) +k(1+K)+a (P - K’)} asems, (317

= e"‘" ;l {*leaA + ({Iaz'\" k2p)} aa e‘*‘ﬁ.

4. SOLUTION OF THE SECULAR EQUATION

In this section we shall assume that the surface conditions on the surface & =h are
dead-loading conditions. Accordingly,

Tole=n = malg=n = 0. 4.0

On the surface & =0, we have

Uyl gm0 = Ualgyeo = 0. 4.2

Introducing (3.14) into (4.2), we obtain

4 4
; (o - tkK)a, =0, ; a,=0. 4.3)
=1 =1
Again introducing (3.17), into (4.1), we obtain

;:t Baa, =0, ;‘-, Caa, =0, 4.4)
where
B, { :ka4(2+}’ ?)“’K(aa -k - k’P))} etk

C,= {-—:kxa,.mﬁ-»k’p }e""‘. @4.5)
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The necessary and sufficient condition for (4.3) and (4.4) to have a non-trivial solution for a,
is

| S T
Qy ap; ay Qy
B| Bz Bg B4 =0. (46)
G G G C,

With the expressions (4.5) for B, and C,, the secular equation (4.6) can be rewritten (see
Appendix) as

BiQ*+28,Q + B3 =0, @n
where
Q=1+P,
Bi = (K*+4) - (K*cosh 2u +4 cos Ku),
B2 =2K*(cosh 2u — cos Ku), (4.8)
B = K (K*+4)+(K*cosh 2 + 4 cos Ku)),
with
u = kh. 4.9)
From (4.7), Q is given by
Q=7 (B2 (85~ BiB"™). (4.10)

We note from (4.8) that
Bt BiBy = KYK*+ 4)(K? sinh? 2u — 4 sin? Ku),

B, =2 (K2 sinh? & — 4 sin’% Ku), @.11)
8= 2K} (K? cosh? u +4 cos% Ku).

Since K?sinh?®2u = 4sin* Ku for all K and g, it follows from (4.10) and (4.11), that Q is real
for all K and u. Also, it is evident from (4.11),5 that 8, <0 and 8,=0. It follows that the
negative alternative in (4.10) leads to a negative value for Q. Since, from (3.4), the condition for
the normal traction on &=h to be a thrust is P> 1, i.e. @> 2, it follows that the negative
alternative in (4.10) corresponds to the normal traction on & = h being tensile.

We note also that 8, = 0. Accordingly, the necessary and sufficient condition that Q > 2, i.e.
the normal traction is a thrust, is

(B2 - BiBy)'"? > =28, - B,. 4.12)
From (4.8) it follows that
2B, + By = 2(K?+ 4)(1 - cos Ku). 4.13)

Accordingly, apart from the trivial case when cos Ku =1, the inequality (4.12) is always
satisfied by the positive alternative in (4.10). We conclude that this corresponds to the normal
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force on the surface & = h being a thrust. In the remainder of this paper we consider only this

situation.

In Fig. 1 we plot from (4.10), with (4.8) and (4.11), the values of the thrust N =P - 1= Q-2
against u for K fixed. The curve in Fig. 1 was drawn for K = 0.4. However, the dependence of
N on K, for K in the range 0 to 0.4, is less than 2%. It was found from the numbers from which

the figure was plotted that Q—2 =~ 13.2/u’ for p < 1.
It is instructive to consider three limiting cases.

(a) u fixed, K—0
From (4.8) it follows that

B =2K*(u’ - sinh’ ) + (K*),
B> =4K?sinh? u + (K",
1= 8K2 + O(K“)

With these expressions we obtain from (4.10)

- 2{sinh’ u + (sinh* u + sinh? u — #2)1/2}

Q sinh? u — u*
In the limit p >, Q =4,
In the limit x>0, Q = (6/ud(1+ 2/V/3)).
12
10p=
Bl
in N
b=
4 p—
2 =3
| | | ] |
-4 -3 -2 -1 O 1
In '_1

Fig. 1. In N vs In u for K =04.

4.14)

4.15)
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®) K fixed, u >
From (4.8), it follows that, as y -,

B = -% K?e,
B =K*e™, (4.16)
Bi= % K*e*,
Then, from (4.10), we obtain
Q=2+(K*+4)'". 4.17)

As K increases from 0 to 1, Q|, .. increases from 4 to 4.236.

(c) K fixed, -0
From (4.8), we obtain, as x>0

8=~ § wKAKT + 4+ 00",

By = uK¥K*+4)+ 0(u"), 4.18)
B3 =2KK*+4)+0(ud).
Then, from (4.10), we obtain

Q =;6, (l +—\§—3} = 12.93/4?, (4.19)

in agreement with the result obtained in case (a).

It is seen from the asymptotic results in (a) that a static bifurcation solution becomes possibie
only when the thrust Q per unit area reaches some critical value. This value depends only very
slightly on the amount of imposed shear and increases from 4 to 4.236 as the amount of shear
increases from 0 to 1. At the critical value of the thrust, u = kh = x, i.e. the wave-length of the
bifurcation solution is zero.

It is seen from Fig. 1 that corresponding to any value of Q greater than the critical value a
uniquely determined static bifurcation solution exists. The wave-length for this solution increases
very rapidly as the thrust is increased beyond the critical value until the corresponding wave-length
is approximately 2.31 times the thickness of the plate. For still higher values of the thrust the
wave-length of the bifurcation solution increases very nearly proportionately to the square root of
the thrust. For any given value of the thrust the wave-length of the static bifurcation is proportional
to the thickness of the plate.
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APPENDIX
With the expressions (3.13) for a,, eqn (4.6) can be written as

(ByCy~ B;C1) +(ByCs ~ ByCy) + (BsCa— BiCy) + (B,Cy - B\C))
+3 KB - BXC;- Co~(Ci- CXBs- B} =0 (51

Also, with (3.13) and the notation Q =1+ P and u = kh, we obtain from (4.5)
By = K(K(1-Q)~1Q] e,
By = K{K(1-Q)+:Q) e,
By =—k1Q + K(1+ 1K) e 41K
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Be= k0Q— K(1 - 1K) e R, 52
Cy=kQ - 1K) e*,
Cy=kHQ +iK)e™,
Cy = kHQ + 1K) et Km,
Ci=k(Q~ iK)ye 1=K,
From (5.2) we oblain
B\Cy- BiCy = (BiCr— B,Cy) €% = —2k{Q +(Q - DK ™,
By~ ByCy = kHQ+ 1IKNuQ + K(1- Q)+ K(1 + 1K)} eXe, (5.3
B(C,~ BCo= k4@~ 1IK)HuQ ~ K1 - Q) - K(1 — 1K)} %%
Whence,
(B,Cs = B3Co) + (BCy - ByCy) = 4ikY QP + KD %%, 54
We also obtain from (5.2)
(B~ BHCy = CY~(Cy - OBy~ By = k{[QK@ - Q)+ K*Je™ +e7) + 2K(Q* + KD} e, 5.5)

With (5.3), (5.4) and {5.5), the secular equation (5.1) may be rewritten as
~AQ*+(Q ~ DKUL +e*5%)+ 4Q* + KD X + % KQU- Q)+ K¥)e™ +e )+ HQ + K e®u =0, (5.6)

From this the relation (4.7) with (4.8) is easily obtained.



